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Equations are constructed for determining the relative strains and
stresses in an infinite plate of viscoelastic material exposed to
symmetrical heating. Possible methods of solving these equations
are examined in relation to various models.

The application of the time-temperature super-
position principle considerably simplifies the solution
of problems of the theory of thermoviscoelasticity.
However, for certain structural plastics, including a
number of glass-reinforced plastics, this principle is
either inapplicable or can be applied only within a
very limited temperature range. For these materials
it is necessary to obtain a solution with allowance for
the temperature dependence of the mechanical char-
acteristics of viscosity and elasticity.

We will consider one of the simplest of these prob-
lems. An infinitely long plate (Fig. 1) of width 2R is
subjected to nonstationary heating symmetrical about
the X-axis. In this case the cross sections of the
plate are free of bending moments about the Y-axis,
and the relative strains in the direction of the longi~-
tudinal X-axis do not depend on the Z coordinate and
are equal (ax = const).

We will determine the time dependence of the rela-
tive strains and stresses in the plate in the directions
of the axes X, Y, Z.

1. Hooke material. For this material the stress-
strain relation for uniaxial states of stress has the
form

6=Ee—EaT. (1)

Applying this relation to our problem, we obtain
o,=Ee, —EaT, o,=Eg, —EaT=0,

o,=FEe,—EaT=0. 2)

Fig. 1. Model of temperature action on plate.

From the first of Egs. (2) we find thatinthe absence
of external forces Py = I—"y =P, = 0 with allowance for
heating symmetry

R R
| Ee,dZ — "EaTdZ =P, =0. (3)
0 0
We will denote mean integral values of the quan-
tities over the width of the plate by a bar; then from
Eq. (3) with a = const we find that

R
a J“ ETdZ o
g, = oR _ asz . )
fEdz
0
Similarly, for the other two directions &, = ozf;

e, =aT, Y

In these expressions the temperature T is a func-
tion of the coordinate X and time t: T = T(Z,t). In
accordance with (2),

6,=0, 0,=0. (5)

In the particular case with E = const it follows
from (5) that

o, =Ea(T —T)*. (6)

Using (6) we can obtain the analytic dependence
0,(Z,t), if the law of temperature vaiation T(Z,t) is
given. Thus, for boundary conditions of the first kind
the exact solution of the problem has the form [1]

0, (Z, ) =Ea(Ty—Ts)x
. z
XZ B, —A,cosu, ?> exp (— ps Fo). (7)
1

Starting from a certain instant of time (Fo = Fo; >
> 0.1) with a high degree of accuracy we can confine
ourselves to a single term of series (7):

*The formulas obtained relate to a maximally thin
plate {6 < R). If the thickness of the plate is com-
mensurable with thgwidth (6= R), then g, =0, g =
=0y = (Ea/(1 = (T - T).
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6, (Z,)=Ea(Ty—T,)x
Z
x (Blv/l1 cos b | exp (— u& Fo). (8)
\

2. Maxwell material. The stress-strain relation
for this material in uniaxial states of stress is given
by

E@g—aT) =no + 0. (9)

Going over to finite differences, on the basis of
(9) for the instant of time t + 1 we can write

Op1=Egy—Ee +
+EaT,—~EaT,y—no,At+o, (10)

We use Eq. (10) to calculate the stresses in the
plate. Since there are no external forces,

k
Mo mdZ =P, =0 (=12, (11)
1

On the basis of (10)

k
At 2 ny0, ANZ
1

2 +
inAZ
1

Bl = &

[ [
}I: EaT; jnAZ— }1: E,aT,5AZ

+ z , (12)
E E.AZ
1
whence, again going over to infinitesimals,
R d R
j no.dZ Ej ETdZ
£y = +a = (13)
{ Edz j EdZ
0 0

Using our mean—integ]g'al notation, we finally write
Eqg. (13) in the form

Ee—aTE =no . (14)

In structure this equation is analogous to relation (9),
but contains the averaged values of the corresponding
quantities.

Eliminating the relative strain &y from (9) and (4),
we establish that

% (no+¢) +EaT—a ET—no —6=0. (15)
a =0

At

%(nc—}—d)—%—E:O. (16)

Equation (15) is an integral equation in the unknown
function o(Z,t); in the general case it admits of only
an approximate analytic or numerical solution. One
of the possible approximate methods of solving this
equation is the collocation method. In accordance with
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the collocation procedure [2], the solution of Eq. (15)
is found in the form of a sum of known (coordinate)
functions:

0 (Z,1) =ici<p‘. Z, 1), 17)
1

where Cy, Cy, Gy, ..., C, areunspecified coefficients,
Substituting (17) into Eq. (18), we obtain the error

E .
R (Gm) = _E~ [I’L G, (Z’ t) + (o o0 (Z’ t)] —

o, (Z, ) —o,(Z, ) +EaT —aET.  (18)

We then select the parameters Cy, Cy,..., Cp
so that the error R(op,) vanishes in the given system
of points Zj (i=1,2,3,...,m) on the interval (0, R(Z))
(collocation points), i.e., we assume that

Rlo,(Z)N=0 (=12, ..,m),
O\<21<22<.-.<Zm—1<Zm<R(Z). (19)

From this condition we obtain an algebraic linear
system of equations in the unknowns Cy, Cy, ..., Cpy:
R [ Z;‘ C,p:(Z, z)] =0 (20)

By this method, provided that o,, converges to the
exact solution (as m tends to infinity), we can find the
approximate solution with any degree of accuracy by
taking a sufficiently large number of parameters C,
Cyy ovty Cp.

As an example we will obtain the solution of Eq.
(15) for the heating of a plate at constant surface tem~
perature (boundary conditions of the first kind). For
simplicity we set E = const and assume that C, =
Cs=... =Cyp = 0. We find the solution (for Fo >0.1)
taking (10) into account in the form in which the elastic
solution was obtained:

o=Ea(ly—Ts)x
z 2
x Cy (B1 — Ajcos py 7%—) exp (— pi Fo). (21)

Here, C; is an unspecified coefficient.

We substitute (21) into Eq. (17). Making the sub-
stitutions
8 .
I

Bl=

for the collocation point Z = R we find that

C, = na . (22)
n2a+4R2(ﬁ——n—£ncos nZ
2 2R

The value of C; is finally calculated from the given
temperature dependence of the parameter n of the
Maxwell material.

The graphs in Fig. 2 represent the variation of the
stresses with time in a plate 10 mm wide at Ty = 20° C
and Tg = 60° C. The mechanical and thermophysical
properties of the plate material correspond to the
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Fig. 2. Variation of the stresses (kg/cm?) with time (sec). The

figures on the curves are the coordinates of the points in mm over

the thickness of the plate. Solid lines—elastic solution, dashed
lines—solution for a Maxwell material.

properties of polymethyl methacrylate. The solid lines
represent the stresses calculated from Eq. (8) on the
assumption that the material is elastic. The dashed
lines correspond to solution (21). As follows from the
graph, starting from a certain moment of time (Fo =
= 0.1) the stresses in the plate vary exponentially.
Taking the viscous properties into account reduces
the stress levels at all points of the plate.

3. Voigt material. The stress~strain relation for
a Voigt material in uniaxial states of stress is

6=E(E—aTl)—n(E—al). (23)

To solve the problem we write this equation in
finite differences:

—EoT, .(24)

€17 8y Ta—T,
g,=Ee —q
¢ (M ( A7 At
Since there are no external forces, by analogy with
(13) we write

&
AZ=P=0.
o

Summing and going back again from AZ to infini-
tesimals dZ, we find that for symmetrical heating

E:Es—aﬁf_+ﬁé~mﬁ. (25)
In this expression ¢ is the mean integral value of the
stress in the direction of the X-axis, equal to the
external force P divided by the cross-sectional area.
¥ P = 0, the structure of Eq. (25) coincides with that
of (23); however, (25) contains the quantities E and
n averaged over the width of the plate.

Equation (25) has an exact solution, and namely,

t t i
oo |exp(— [ £ ar),
LSQ(exp(j = dt)dt+a]exp( 5\ - atf)

o TE
—_—
Ul Ul

Q= anT (26)

At large relative strains measured in tens and
hundreds of percent, such as are typical, for example,

of thermoplastic molding processes, in view of the
smallness of the temperature strains we can assume
that Q = 0. Then (26) takes the form

t

e:eoexp(-—- g-}i; dt\) .
J 1M K

(26)

4. Hereditary material. The stress-strain relation
for a linear hereditary material is established by the
expressions

t

c:E(g—aT)—Ej‘ R{t—s)(e—aT)ds, (27)
0

&= (28)

¢
% + —;‘-5' K{t—syods+aT.

Each of these equations can be used for describing
the o(t) relation in an individual layer of the plate.
We divide the time interval 0—t into t segments At,

In accordance with (28), for the first time segment
0 + 1 we can write that in the i-th layer

1

o
€41 = Lﬁo,fl— + E K;(AH)o, oAt +aT;. (29)
Hence the stress in that layer
0041 == £ (SMOH —oT) (30)
14+ K (A At

Summing the stresses over all the layers, we find
that

(1)

}kjE (601 —aT)
Tuon ~ 1+ K;(Af)Af

1

Hence, considering that at t = 1. At, limK;(At) — idem,
At—0
k
P Z E,aT,;
= 14K, (At)At
€041 = . (32)
e VT O
= 1+ K, (AD)A¢L
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For the time 0 + 2At we correspondingly obtain

Eopo =
&
E;oT, K{(2AH 600
P+ S‘_—_l A ACEC AZAL A50
- T I+ K@ana Z 1+K@Ah)AL
E“L.__ (33)
~ 14 K, (At At
We sirhilarly establish that at time 0 + t
k
80+t=(}]aEiT,~+P[1 + K (AHAL+
1
d k -1
+ Ay Ki(fAt)ooH) ( ZE> +...
1 1
k
ALY (A1 0ot
. L . (34)

k
£

Increasing the number of intervals (m — « and
At —0), in the limit we obtain

¢t R .
¢ — Eﬂ n Ei H Kt —s)odzds +a Lk
0
or
P R .t -
g = = +%g5 K({—s)o dst—%a—g% . {35)
[(I1]

In structure the latter equation corresponds to the
starting relation (28), but contains characteristics
averaged over the width of the plate. The analytic
solution of this equation for specific temperature
conditions can be obtained by the collocation method
in the form of a sum of coordinate functions:

T (Z )= ¥ }: Ciio; ) ¥; (2,
1,1
i==1,23 .,mj=123, .., ¢ (36)

As distinct from the solution for a Maxwell material
the collocation points are assigned along two axes: on
the interval 0—R along the Z coordinate axis and on
the interval 0—t along the time axis. Summation with
respect to two indices considerably increases the
labor of calculation when Eq. (36) is employed. Ac-
cordingly, the most effective methods of solving Eq.
(35) may be numerical, for example, the method of
finite sums.

In calculations based on equations (22), (26), (26'),
(36) finding the means ﬁ, :E_, E ete. presents certain diffi-
culties. The procedure can be simplified by approximat-
ing the experimental relations n{T)}, E(T), »(T) with lin-
ear functions: n(T) = ny + aT; E(T) = Ey + bT; n(T) =
=T t+ cT.

Averaging over the interval 0—R, we obtain

n=rto+aT, E = Ey +bT, 1 =, = cT.

646

The function T has been tabulated for a series of
solutions of the heat conduction equation in {1].

In conclusion, we present an example of the com-
plete calculation of the strains and stresses in a
polymethyl methacrylate plate on the assumption that
the mechanical properties of the material satisfy
Voigt's equation.

Conditions of the problem. The plate is initially
stretched in the high-elastic state at a temperature
T = 130° C to a strain €4 = 15.2% and then slowly
cooled in the stretched state. These and greater
strains occur when polymethyl methacrylate is vac-
uum-formed. The initial temperature of the plate T =
= 20° C is constant over the thickness 2R = 4 mm. At
time t = 0 the temperature of the plate surfaces be-
comes equal to Ty =100° C and remains constant in
time. It is required to calculate the change in the
relative deformation of the plate as a function of time.
The thermal diffusivity of polymethyl methacrylate
a=4-10"* m*/hr.

As the temperature of the plate rises, owing to the
action of the internal "frozen" stresses the heating
and softening of the material is accompanied by a
process of shrinkage and shortening of the dimen-
sions to the initial values. The given temperature
interval is quite broad (130—20-100°) and includes
the glass transition temperature of polymethyl meth-
acrylate. In the presence of such a considerable tem-
perature change the principle of the time-temperature
analogy does not apply. Since the strain component
due to thermal expansion is much less than the ini-
tial value of the total strain (AT = 8-10™ (100—
20°) = 0.64%), Eq. (26') will be used for calculation
purposes. We first calculate E and 7 for various
values of the time t. The results of the calculation
are presented in the table. We replace the interval
in (26') by the sum

f_ =
—E~ dt = Z —E;‘— At
¥ 1 N

The calculated values of the integral and the func-
tion €(t) are also presented in the table. The &(t)
relation is plotted in Fig. 3, which also gives the
results of an experimental verification. A plate of
polymethyl methacrylate measuring 17 X 24 X 4 mm
was lowered into boiling water, the long dimension
of the plate was measured periodically, and the rela-
tive deformation calculated. As a comparison shows,
best agreement with the calculation is observed at
small heating times and also after the plate has been
fully heated (Fo > 1), The greatest discrepancy (up
to 27%) between the calculated and experimental val-
ues of the specimen length is observed on the interval
140-300 sec, which is primarily attributable to the
nature of the assumptions made,* and also to the rela-
tive inaccuracy of the input data. In spite of this, the
relation obtained gives a qualitatively correct reflec~
tion of the shrinkage process.

*The linear approximation of E(T) and 7(T), the
use of the Voigt equation, and the condition a = const.



Variation of the Material Parameters and the Length of the Specimen with Time
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Fig. 3. Variation of the length of a polymethyl meth-

acrylate specimen (mm) and the stresses oy and oy

(kg/cmz) as a result of temperature action: 1)1 = [ (t);

2) gy = = oy(t); 3) on= onlt); 4) experimental results
for [ =1 (t).

In the calculation we employed a linear approxima-
tion of the temperature dependence of the mechanical
properties of polymethyl methacrylate, namely,

E =3.8-10* — 3.79.10* T kg/cm?
n = 1.9.107 — 1.89.10° T kg/em? - sec.

Obviously, more accurate results can be obtained
if, for example, the approximation takes the form

E =qa; + a;T + a,T%,
n="by + 0,7 4 b,T2

The table also includes the values of the parameters
needed for calculating the stresses in the middle sur-
face (O’y) and the surface stresses {oy). The sign of
the stress is determined according to the rule

ex=0, o) =Ee=0,
=0, o()=1e=0.
In accordance with (23)
0 =0(e) + o (e)

The time dependence of the stresses oy and oy, ig
shown graphically in Fig. 3.

The equations obtained above take into account the
variation of the mechanical properties of the visco-
elastic material with respect to time and the space
coordinate. Therefore they can be used for calculating
the stresses and strains due not only to temperature
effects but also to other factors leading to similar
changes, including moisture content [3], aggressive
media, radiation, etc., in other words, factors that
create a nonstationary field of variation of the me-
chanical characteristics in a plate of viscoelastic
material.

NOTATION
Ty is the initial temperature of plate; Tg is the
surface temperature of plate; u, are the roots of
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characteristic equations; A, and B, are constant
coefficients; Fo = at/R? is the Fourier number; k
is the number of divisions AZ with respect to the Z
coordinate; € is the initial deformation; m is the
number of intervals At.
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